qq互联插件
 注册  找回密码

音响功放的最高境界!什么是最理想/最好的功放?

2017-12-27 18:12| 发布者: 体验中心 |来自: 润丰名线坊

      办音响杂志二十几年,见过与听过与「拆过」的扩大机不计其数,各家虽各有千秋,但都离我的理想相差太远,没有一台符合我的要求的。


什么是我心目中最理想的扩大机呢﹖


大Power?大电流?亦或是全平衡输出的扩大机﹖


当然都不是。


      据我所知,扩大机的音质与输出功率永远是互相矛盾的,其实很多事物也都一样,鱼与熊掌是很难兼得的,不是吗?


      要好音质的扩大机,就不能兼有高输出功率,因此唯有使用高效率喇叭,才能使用小功率的扩大机,获得好音质。


为什么输出功率高就难获得好音质呢?

      因为要使扩大机的输出功率大,就必需采用推挽电路,或并联电路,但推挽电路或并联电路却是造成声音不好听最大的因素。


    为什么呢?我们知道所谓的「推挽电路」,是硬把一个完整的讯号,一分为二,成为上半波与下半波两个波形,然后将这上下波分别由二个不同的放大器去放大,最后到输出级再把这分离的上下波「接合」起来,成为一个完整的讯号。


      试想这二组放大器的性能怎么会一模一样,而到最后的输出又怎么会将这上、下二个讯号「接合」的那么完美,声音又怎么会好﹖


    而并联的情形也有点类似,并联多个晶体或真空管,每一个晶体或真空管的特性也不可能完全一样,使用多个晶体或真空管并联只会产生复杂的相位差,使得声音粗糙与聚焦不准。


       既然输出功率与音质不可兼得,那又该怎么办呢﹖


     还是句老话,只有用高效率的喇叭一途,高效率的喇叭,只需要一点点的功率,就能推出宏大的音量,因此就可以使用单端且不并联的扩大机,而不必使用推挽或并联的扩大机,也因此就较能够获得好音质!


       那我又为什么更不要采用最近音响界甚为流行的「平衡输入与输出」的扩大机呢?


     我在「玩尽Altec A5」一开始也曾经提到过:「平衡式讯号传送的目的,只是为了录音室或公众广播的用途,因为录音室或大众广播系统用的讯号线经常长达数十尺甚至百尺以上,太长的讯号线不但会产生音频漏失,而且还会感染到噪声,所以才需要设计平衡式的扩大机来抵消噪声。」


     平衡式的扩大机需用双倍材料不谈,若要设计出上下两个放大器的特性完全一样就比登天还要困难,其道理与「推挽放大」一样,因为所谓的平衡电路就是由头至尾的全推挽电路。


     再者,实际上在一般家庭使用的讯号线都很短,很少有超过三公尺的,其实即使用六、七公尺的讯号线也不会产生声音退化或感染杂音的,又为什么非平衡不可呢?


      不论是真空管或电晶体都可以用单端来设计,但目前我暂时先考虑真空管。


    其实我心目中最理想的真空管扩大机要件与许多要求极致的音响玩家都差不多,就是「单端」、「纯A类」、「直热三极管」、「无负回授」、「MONO」、「真空管整流」六项,再加上我自己悟出的「绝不并联」与「使用最少零件」共计八项,此之为「张八点」。


一,单端:

     单端就是英文"Single Ended"之意,简称「SE」,例如300Bse,最后面的"se"就是代表「单端」 的意思,也就是只用单支真空管做放大电路之意,有的真空管虽然表面看起来是一支,但内部却有两支,如果做成推挽电路,就不能称为单端,也有的单端用两支以上的真空管,但采用的是单端并联的方式,称为「单端并联」,英文简称"PS",除了单端之外,就是「推挽」,英文简称"PP",如果是「并联推挽」,英文称为"PPP"。


    为什么非要单端不可呢﹖刚才已经提到过,推挽式扩大机必需要有倒相电路,要知设计再好的倒相电路都不可能输出完全对称的波形,因此经过推挽级输出的波形也绝不会对称。而单端设计扩大机里是没有倒相电路的,不会有不对称的问题。


     第二个原因是我们目前的测试仪器只能做静态的测试,而不能做动态的测试,因此只能测试二次元的东西,而不能测试出三次元的东西,实际上推挽电路在动态的工作中,其输出的波形起始点总会有提前或落后的情形,这是现阶段的仪器尚无法测试到的相位差,但是人耳却对相位差是非常灵敏的,只要有一点点的相位差,就可察觉到。


      而单端设计的输出波形没有相位差的问题,这也是为什么单端扩大机听起来较为顺畅悦耳的主要原因,只要比较推挽与单端的声音就可证明。


       再一个原因就是推挽电路会大幅抵消二次谐波失真,正由于如此,因而更突显出奇次谐波失真来。


      我们知道乐器的泛音以二次谐波所占的比例最大,如果我们刻意降低扩大机的二次谐波,因而突显出高次谐波,与原来乐器谐波的比例不同,那么回放的声音又怎么会像原来乐器的声音﹖


二、直热三极管:


       玩真空管的朋友都知道三极管的内阻比四极或五极管低,线性也较佳,但却不知道为什么一定非直热式的三极管不可。


      其实道理很简单,原因有二,一是直热式的三极管其阴极即丝极,而旁热式的三极管阴极与丝极是分开的,因此直热式的三极管少掉了一个极,也就是说,少了一个会渲染声音的零件;二是直热式的真空管通常都是较早期的真空管,而较早期真空管制造质量比较后期的高,故障率非常低,而且那个时代的作风也较保守,公布的特性都有保留,在使用时往往超出规格也不会损坏,较保守的规格也代表较具有信赖度,可以使用很久,我曾经测试过几种已经使用很久的古老旧管子,结果特性都很接近新管子。


三、纯A类:


为什么要纯A类﹖


     我们知道放大器在放大一个基本波的时候,希望其放大后所输出的波形除了与输入波形完全一样之外,还希望因放大而产生的谐波失真也尽可能低。


      我们也知道前级扩大机的放大电路都是A类的设计,而后级扩大机里的输入级与驱动级也大多都是工作于A类,而只有在输出级,才会有 A类、B类与AB类等不同的放大方式。


     A类放大工作于真空管或晶体特性曲线的线性部份,因此引起的电压或电流变化是完全与输入波形吻合,因此不但其波形失真极低,且其输出的谐波成份也较为单纯,主要是较低阶的二次与三次谐波失真。


     而B类放大是由两支或以上的真空管或晶体交替工作的,在小讯号时,会工作于特性曲线的弯曲部份,因此输出波形会产生不连续的缺口,引起时间提前或落后的现象,也就是交越失真,其输出波形不是连续的,且其谐波失真含有较高阶的奇数谐波失真,也就会产生多次谐波所组成的方波,而这些高阶谐波与音乐没有任何关联的,因此声音会特别刺耳难听。


        单端设计的扩大机都是A类放大的设计,而只有在推挽电路中才有A类、B类与AB类的设计。


        AB类放大的工作点设在A类与B类之间,虽然失真不高,但终究还是推挽电路,在实际的动态工作中,还是会有时差的问题与抵消二次谐波的问题。


        那么既然A类放大的失真较低,却为什么大多数的扩大机都采用B类或AB类的放大方式呢﹖


     原因是A类放大的效率太低,大约只有20%的程度,所以必需损失80%左右的功率。想要有10W的输出功率,其电源供应就需要50W左右的功率消耗,白白浪费了40W的功率。但B类放大的效率却可高达75%左右,平白就比A类多出3至10倍的输出功率(后者系对单端而言)。至于AB类放大的效率是介于A类与B类之间。


     输出功率大的目的是为了能驱动效率低的喇叭,因而牺牲了音质,但是如果我们用高效率的喇叭,才有资格使用输出功率虽小,但音质却佳的单端A类扩大机。


四、无负回授:


     负回授的优点相信玩音响的同好们都知道的,负回授可以拓宽频率响应,可以降低放大器的失真,可以固定增益,可以降低输出阻抗,提高SN比等多项优点......等,好处实在太多了,因此厂制的扩大机几乎没有不采用负回授电路的,采用负回授可使得各项特性规格的数据都大大地提高,也使得机器更好卖,甚至有些音响玩家们还以为失真愈低就代表性能愈好,因此,有人说负回授是扩大机的万灵丹。


    但是内行的人都知道,负回授的负作用更大,负回授会造成时间延迟的现象,因为负回授是把已经放大过的输出讯号一部份,回送到输入端去,因此会造成时间延迟的问题,因此负回授的声音总会比较雾,声音不自然,比较呆,以及声音不够鲜活等等。


    我以前装过许多扩大机,有单端的,也有推挽的,根据我的经验,如果推挽扩大机不加负回授,声音就会粗,因此一定要加上些负回授,声音才会细。但是我装的单端扩大机,即使不加负回授,声音还是很细致,这就代表了推挽扩大机一定有不对劲的地方。


    其实负回授除了由尾至头的总负回授之外,还有级间本身的负回授,像是把阴极旁路电容器拿掉,形成电流负回授之类的,但是也有另一种负回授往往没有被人注意到,那就是Cathode Follow电路与SRPP电路,这两种电路实际上也是一种负回授的电路。


      我们曾经做过许多次的实验,使用Cathode Follow电路的声音总是会有雾,虽然它的输出阻抗较低,频率响应较宽,失真也较低,但这个电路终究是100%的负回授,会严重影响音质,而SRPP的电路实际上上半支真空管也是个Cathode Follow 电路,声音还是会模糊,虽然影响的程度没有Cathode Follow电路来的高。


       我们的PS-2真空管电源稳压器原来也使用负回授,后来也改为无负回授的PS-3声音更活泼,自然。


     像是Audio Note的扩大机也强调不使用负回授,但是他们却采用有一半负回授的SRPP电路,似乎是有点矛盾。如果再翻翻其他的原装管机或台装管机的机器,里面采用Cathode Follow 或SRPP电路的不可谓之少。


      不管您使用的是进口管机,或是台装管机,可对不起了,我可是实话实说。


     如果您曾装过Oboe的前级的话,可以试试Cathode Follow与SRPP电路的比较,在Oboe的印刷电路板上是可以分别安装这两种不同的电路的,如果您又懂一点技巧的话,也可以将第二级改为单管的电路,这样,这三种电路您都可以在这块电路板上试试看,听听这三种电路的声音差别,就会同意我的说法了。


     但不可否认的是,负回授除了上述的优点之外,还有可以固定放大器增益的功能,因此不加负回授的电路,一定要使用误差极低的主动与被动零件,尤其是真空管,一定要配对,找到一对增益完全一样的,否则两个声道的增益就会不一样。


五、真空管整流:

       这是我从改装 Oboe 前级所获得的经验,使用晶体二极体来整流,声音会比较瘦,比较紧,比较薄,比较没有韵,比较不像真正现场乐器的声音。


        如果您不服气,请您把您的真空管机改用真空管整流试试看,或者把您觉得最好听的整流二极体带来我这里,与我的整流管做一比较。


六、使用最少零件:

您知道失真有多少种吗﹖


不下于上百种!


那有那么多的失真﹖


就是有。


     我们知道每一个零件都各有各自的音色,因此在扩大机中多用一个零件,就会多出一个零件音色,也就是多一道的音染,因此除非不得已,我是不会多使用任何一个多余的零件的。


     不相信您试试看,在扩大机上每多加上一个零件,就会多出一个声音,不管您加的零件是主动零件或被动零件,也不管您的零件是加在讯号通路上或电源电路上,只要多加一个零件,就会多出一种声音,如果您的扩大机用上百个的零件,那岂非有上百种不同的失真﹖


      因此,每多加一级放大、每多加一个零件,就会每多加一项失真,多一次扭曲、多一次渲染。


     另外一个原因,就是多一个零件,就会产生一个高频傍路作用,愈少的零件,对高频傍路的作用就愈低,就愈能获得较宽的频率响应,以及良好的稳定性,因此除非没有这个零件就不能工作,就不要使用这个零件。


       根据我的经验,使用的零件愈少,声音就愈纯,就愈像原来音乐的声音。


       所以我要尽可能把扩大机设计得愈简单愈好,使用的零件更要愈少愈好。


      但是使用最少的零件也是必需要有先决要考虑的因素,就是增益够不够。很多人都以为CD直入后级扩大机的声音比较纯,就用之,但是出来的声音往往声音偏薄,偏尖,偏冷,还不知道是什么原因,其实原因很简单,就是CD直入的增益不够,因此CD直入到后级必要条件之一是后级扩大机的增益要高,条件之二是喇叭的效率要高,或者两者都是,如果条件不符合的话,则将会因增益不够而使得声音偏薄,声音偏瘦,声音较尖或较冷,因此如果您也想使用最少的零件的话,千万要注意上述的条件。


        因此,如果您的喇叭效率不够高,或是扩大机的增益不够高,就必需要使用前级扩大机,而不要盲目地去追求CD直入。


路过

雷人

握手
1

鲜花

鸡蛋

刚表态过的朋友 (1 人)

最新评论

Archiver|手机版|客服:010-60152166 邮箱:zx@jd-bbs.com|广告合作|账号注销|家电联盟网 ( 京ICP备09075138号-8 )

GMT+8, 2024-4-29 22:24